博客
关于我
av sample相关
阅读量:134 次
发布时间:2019-02-28

本文共 1609 字,大约阅读时间需要 5 分钟。

ffmpeg中定义audio sample格式,bits, planar,format的表:

/** this table gives more information about formats */static const SampleFmtInfo sample_fmt_info[AV_SAMPLE_FMT_NB] = {    [AV_SAMPLE_FMT_U8]   = { .name =   "u8", .bits =  8, .planar = 0, .altform = AV_SAMPLE_FMT_U8P  },    [AV_SAMPLE_FMT_S16]  = { .name =  "s16", .bits = 16, .planar = 0, .altform = AV_SAMPLE_FMT_S16P },    [AV_SAMPLE_FMT_S32]  = { .name =  "s32", .bits = 32, .planar = 0, .altform = AV_SAMPLE_FMT_S32P },    [AV_SAMPLE_FMT_S64]  = { .name =  "s64", .bits = 64, .planar = 0, .altform = AV_SAMPLE_FMT_S64P },    [AV_SAMPLE_FMT_FLT]  = { .name =  "flt", .bits = 32, .planar = 0, .altform = AV_SAMPLE_FMT_FLTP },    [AV_SAMPLE_FMT_DBL]  = { .name =  "dbl", .bits = 64, .planar = 0, .altform = AV_SAMPLE_FMT_DBLP },    [AV_SAMPLE_FMT_U8P]  = { .name =  "u8p", .bits =  8, .planar = 1, .altform = AV_SAMPLE_FMT_U8   },    [AV_SAMPLE_FMT_S16P] = { .name = "s16p", .bits = 16, .planar = 1, .altform = AV_SAMPLE_FMT_S16  },    [AV_SAMPLE_FMT_S32P] = { .name = "s32p", .bits = 32, .planar = 1, .altform = AV_SAMPLE_FMT_S32  },    [AV_SAMPLE_FMT_S64P] = { .name = "s64p", .bits = 64, .planar = 1, .altform = AV_SAMPLE_FMT_S64  },    [AV_SAMPLE_FMT_FLTP] = { .name = "fltp", .bits = 32, .planar = 1, .altform = AV_SAMPLE_FMT_FLT  },    [AV_SAMPLE_FMT_DBLP] = { .name = "dblp", .bits = 64, .planar = 1, .altform = AV_SAMPLE_FMT_DBL  },};

sample相关的函数:

av_get_sample_fmtav_get_alt_sample_fmtav_get_packed_sample_fmtav_get_planar_sample_fmtav_get_sample_fmt_stringav_get_bytes_per_sampleav_get_sample_fmt_nameav_sample_fmt_is_planarav_samples_get_buffer_size

转载地址:http://xuld.baihongyu.com/

你可能感兴趣的文章
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 时事和见解【2023】
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>